$$
\mathrm{Na}_{7}\left|\mathrm{BiBr}_{6}\right|\left|\mathrm{Bi}_{2} \mathrm{Br}_{10}\right| \cdot 18 \mathrm{H}_{2} \mathrm{O}
$$

Some contacts shorter than the sum of the van der Waals radii ($3.90 \AA$: Wells, 1975) are present between Br atoms of different anions $\mid \mathrm{Br}(2)-\mathrm{Br}\left(7^{\text {vii }}\right) 3.78$ (2). $\operatorname{Br}(4)-\operatorname{Br}\left(5^{v}\right) 3.88$ (1) $\AA \mid$.

Both anions in the title compound seem to be interconnected through the $\mathrm{Na}(2)$ atoms into chains parallel to [111]. This is probably the reason for the existence of two kinds of anions. The $\mathrm{Na}(2)$ atom is octahedrally coordinated by four Br atoms of both anions and by two $\mathrm{H}_{2} \mathrm{O}$ molecules (in cis positions). The $\mathrm{Na}(1)$ as well as the $\mathrm{Na}(3)$ atoms are coordinated by six $\mathrm{H}_{2} \mathrm{O}$ molecules. The coordination polyhedra are distorted octahedra. The remaining $\mathrm{Na}(4)$ atom is coordinated by four $\mathrm{H}_{2} \mathrm{O}$ molecules and by one Br atom in a very irregular polyhedron. The cationic polyhedra are linked into a three-dimensional network through common edges and vertices. Hydrogen bonds do not seem to be important in this structure; there are no contacts between O atoms of different $\mathrm{H}_{2} \mathrm{O}$ molecules shorter than $2 \cdot 80 \AA$.

The author is grateful to Professor L. Golič for some stimulating discussions and to Mrs Nada Počkaj for her
enthusiastic collaboration in the synthesis and characterization of some bromobismuthates. The financial support of the Research Community of Slovenia is also gratefully acknowledged.

References

Cromer, D. T. \& Liberman. D. (1970). J. Chem. Phy's. 53. 1891-1898.
Cromer. D. T. \& Mann. J. B. (1968). Acta Crist. A 24. 321-324.
Larson. A. C. (1967). Acta Crist. 23, 664-665.
Lazarinı, F. (1977a). Acta Cri'st. B33, 1954-1956.
Lazarini. F. (1977b). Acta Crist. B33, 1957-1959.
Lazarinı, F. (1977c). Acta Crist. B33, 2686-2689.
Lazarini. F. (1977d). Acta Crist. B33. 2961-2964.
Lazarini. F. (1978). Acta Crist. B34. 2288-2290.
Lazarini, F. \& Leban. I. (1980). Acta Cryst. B36, 27452747.

Stewart, J. M., Kruger. G. J., Ammon, H. L., Dickinson. C. \& Hall. S. R. (1972). The XRAY system - version of June 1972. Tech. Rep. TR-192. Computer Science Center. Univ. of Maryland. College Park. Maryland.
Wells. A. F. (1975). Structural Inorganic Chemistry, 4th ed. Oxford: Clarendon Press.

Acta Cryst. (1980). B36, 2750-2751

Single-Crystal Refinement of the Structure of Carbon Dioxide

By Arndt Simon and Karl Peters
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-7000 Stuttgart 80, Federal Republic of Germany

(Received 25 June 1980: accepted 7 July 1980)

Abstract

CO}_{2}, P a 3, a_{0}=5.624\) (2) \AA. The structure refinement was based on 57 observed reflections of a single crystal at $150 \mathrm{~K}(R=0.041)$. The $\mathrm{C}-\mathrm{O}$ distance is determined as $1 \cdot 155$ (1) \AA.

Introduction. The crystal structure of carbon dioxide has been determined by Mark \& Pohland (1925, 1926), de Smedt \& Keesom (1925) and Krüner (1926) using X-ray powder methods. According to these investigations, CO_{2} crystallizes in space group Pa 3 , the C atom occupying position $4(a)$ and the O atoms $8(c)$. In spite of considerable differences in the oxygen x parameter in the original papers, it is generally accepted to be $x \simeq 0 \cdot 11$ (Wyckoff, 1963).

Single crystals of CO_{2} were grown from a solution in $\mathrm{CH}_{2} \mathrm{SF}_{4}$ (Simon, Peters, Lentz \& Seppelt, 1980). A miniaturized Bridgman technique was used (Simon,

0567-7408/80/I12750-02\$01.00

Deiseroth, Westerbeck \& Hillenkötter, 1976) which has proved helpful in numerous cases of low-temperature crystal growth from gases and liquids. In the case of CO_{2}, a $150 / 300 \mathrm{~K}$ temperature gradient was slowly shifted along the axis of a glass capillary (diameter $0 \cdot 2$ mm) filled with the solution. Several attempts finally led to a single crystal of length ca 2 mm . Crystal-growth and intensity measurements were carried out on a Syntex $P 2$, four-circle diffractometer. The results are based on 71 independent reflections using the $X T L$ system 157 reflections with $I>2 \sigma(I)$; originally 281 measured reflections in the range $0<h, k, l<7 ; 7^{\circ}<$ $2 \theta<55^{\circ}$; Mo K t, ω scan at 0.5 to $29^{\circ} \mathrm{min}^{-1}$ with $\Delta \omega=1 \cdot 0^{\circ} \mid$. No absorption correction was applied.

The final $R=\sum\left(\left|F_{0}\right|-\left|F_{c}\right|\right) / \sum\left|F_{0}\right|=0.041$. Refinement including unobserved reflections yielded $R^{\prime}=0.065$. Using the general weighting scheme $R_{k}=$ $\sum w^{1 / 2}\left(\left|F_{o}\right|-\left|F_{c}\right|\right) / \sum w^{1 / 2}\left|F_{0}\right|$, where $w=1 / \sigma^{2}$, the

[^0]Table 1. Positional and thermal parameters
$B_{l j}\left(\AA^{2}\right)$ are defined by $\exp \left[-\frac{1}{-}\left(B_{11} h^{2} a^{* 2}+B_{22} k^{2} b^{* 2}+\cdots+\right.\right.$ $\left.\left.2 B_{23} k l b^{*} c^{*}\right)\right]$.

		x	B_{11}	B_{12}
		x	$1.70(8)$	$0.20(13)$
C	$4(a)$	0	$2.30(6)$	$-0.32(6)$

corresponding values are $R_{w}=0.040$ and $R_{w}^{\prime}=0.042$, respectively.*

Discussion. The structural parameters at 150 K are given in Table 1.

The $\mathrm{C}-\mathrm{O}$ distance in the CO_{2} molecule is determined as 1.155 (1) A. This value compares well with

[^1]the results of electron diffraction experiments which led to distances of $1.15 \AA$ (Hassel \& Viervoll, 1947) and $1 \cdot 162(\pm 1 \cdot 0) \AA$ (Karle \& Karle, 1949, 1950).

References

Hassel, O. \& Viervoll, H. (1947). Acta Chem. Scand. 1, 149-168.
Karle, I. L. \& Karle, J. (1949). J. Chem. Phys. 17, 1052-1058.
Karle, I. L. \& Karle, J. (1950). J. Chem. Phys. 18, 565.
Krüner, H. (1926). Z. Kristallogr. 63, 275-283.
Mark, H. \& Pohland, E. (1925). Z. Kristallogr. 61, 293-298.
Mark, H. \& Pohland, E. (1926). Z. Kristallogr. 64, 113-114.
Simon, A., Deiseroth, H.-J., Westerbeck, E. \& Hillenkötter, B. (1976). Z. Anorg. Allg. Chem. 423, 203-211.
Simon, A., Peters, E.-M., Lentz, D. \& Seppelt, K. (1980). Z. Anorg. Allg. Chem. In the press.

Smedt, J. de \& Keesom, W. H. (1925). Z. Kristallogr. 62, 312-313.
Wyckoff, R. W. G. (1963). Crystal Structures, Vol. 1, 2nd ed. p. 368. New York: Interscience.

Acta Cryst. (1980). B36, 2751-2753

Single-Crystal Structure Analysis of the Spinel Copper Pentaindium Octasulphide

By L. Gastaldi and L. Scaramuzza
Istituto di Teoria e Struttura Elettronica e Comportamento Spettrochimico dei Composti di Coordinazione, CNR, CP 10, 00016 Monterotondo Stazione, Roma, Italy

(Received 23 November 1979; accepted 25 June 1980)

Abstract

Cu}_{0.5} \mathrm{In}_{2.5} \mathrm{~S}_{4}, M_{r}=447 \cdot 06\), cubic, $F \overline{4} 3 m, a=$ 10.6858 (3) $\AA, U=1220.2 \AA^{3}, D_{c}=4.87 \mathrm{Mg} \mathrm{m}^{-3}$, $Z=8, F(000)=1593.9, \mu($ Mo $K \alpha)=12.25 \mathrm{~mm}^{-1}$. The space group was assigned in a preliminary communication. The present work reports the X-ray single-crystal structural determination of the same compound and a consideration of the anharmonic lattice model found. The structure has been refined to a final R of 0.056 for 242 reflections collected with a four-circle diffractometer (Mo Ka radiation).

Introduction. The ideal spinel structure can be viewed as a cubic close-packed array of anions in which one eighth of the tetrahedral and one half of the octahedral interstices are occupied by cations. The general formula of a $1-3$ spinel $M_{1 / 2}^{+} M_{5 / 2}^{3+} X_{4}^{2-}$ may be written as $M_{1 / 2-x}^{+} M_{1 / 2+x}^{3+}\left[M_{x}^{+} M_{2-x}^{3+}\right] X_{4}^{2-}$ where the ions in 0567-7408/80/112751-03\$01.00

brackets occupy octahedral sites. Different distributions of cations among the available sites are possible by varying the value of x (the degree of inversion). The two extreme distributions are known as 'normal' for $x=0$ and 'inverse' for $x=0 \cdot 5$. The cationic distribution adopted by a particular spinel depends on the interplay of several forces influencing the total internal energy of the crystal (Blasse, 1964; Gastaldi \& Lapiccirella, 1978).

Although the space group $F d 3 m$ has usually been assigned to spinels, in the last few years a large body of experimental evidence suggests that in many cases they crystallize with the non-centrosymmetric space group F $\overline{4} 3 m$ (Thompson \& Grimes, 1977; Gastaldi \& Scaramuzza, 1979). This lowering of symmetry can arise from a long-range cation ordering within the tetrahedral and/or octahedral sublattice and from a
(c) 1980 International Union of Crystallography

[^0]: (c) 1980 International Union of Crystallography

[^1]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35467 (2 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

